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"Aﬁstract'

A discussion is first given of the general problem of the flow
of gas in a gun, of the simplified problem known as the Lagrange
problem, and of the Pidduck-Kent special solution of the differential
equation of the Lagrange problem, This special solution is commonly
supposed to be the limiting solution of the latter. An improved
derivation is then given of the Pidduck-Kent solution, the improve-
ment consisting in accounting for gas imperfection by means of a
covolume correction.

The Pidduck-Kent solution is then put into a form suitable for
easy calculation. To summarize the results, let the following sym-

~bols denote certain quantities as calculated from the Pidduck-Kent

solution, viz

Py © breech pressure

Pp = pressure -at the base of the projectile
P = space-mean pressure

Wp = kinetic energy of the projectile

Wc = kinetic energy of the powder

- Then, according to the Pidduck-Kent solution,

£

_.== \AL'*VVE — |.t€yg
)%? Wp |

% “z; %)-“;( +1)
- = 2n13 . 2(n
I S

where € denotes the charge-projectile mass ratiogén,rlthe polytropic
index V/(¥-1), (vhere ¥ is the effective ratio of specific heats that
takes heat loss into account), and a_ a parameter characteristic of the
Pidduck-Kent solution, © | |

' The quantity b is'given by

- awl (5]

The quantity o, depending only on € , may be found by linear inter-
polation in Table I of Appendix A. The quantity,g , also depending

on}ly on € , may be found by linear interpolation 'in Table II of

Appendix A. The quantity €,, depending weakly on both € and N , may

be found by two-way linear interpolation in Table III of Appendix A

or by reading from the graphs or the contour map in Appendix B. Ordinarily
reading from the graphs is the easiest and most accurate of the three
methods of finding e¢,. With these aids one may expect to obtain Pidduck-
Kent values (as distInguished of course from true values) with the follow-
ing maximum errors for the range € = 0 to 10, ¥ = 1.2 to 3:

1
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Section L@fElementary Cdrfeétioné‘for the Motion of_thé Powdéf-éas

, In cases wherem the initial mass # of-_zth'e powder
is small compared  to the mass m of the projectile, it is customary
to correct for the motion of the powder ggs by means of certain

Véry simple formulas. These are;

n=P._<He/z_)_‘ - R @
Pepu+en) @
W= () (12mV?) N O

where €3 ¢m | S : (4)

apnd Py, denbtes_the pressure at the breééh, Py the pressure at the

base of the projectiie, P the space-mean.pressure behind the pro-
Jeetile, V the velocity of the projectile, and W, the kinetic

energy of the powder plus powder gas. These formulas are derived'
on thé assumptions that the cross-sectional area is uniform all
the way from the breech to the base. of.the projectile and that the

powdelr grains and powder gas together form a fluid of uniform density.

Under. these conditions the velocity of this fluid varies linearly
from the value zero at the breech to the value V at the base of the
projectile. The correction for the kinetic energy of the charge,
viz addition of one-third the mass of the charge to that of the pro-

%ectiie, is then similar to that for the kinetic energy of a spring
without waves) to which a bob is attached.

Segtion II. The General Problem of the Motion of the Powder.

Actually the problem is somewhat more complicated than the -
simple theory would indicate. Gas friction is not taken into
actount at all in the above formulas for the pressure ratios.
Chambrage, the drop in cross-sectional area on going from the-
powder chamber to the bore, introduces a non-uniformity into the .
eross-sectional area, a non-uniformity which will probably become
mueh more serious as one goes in the direction of guns of much
higher velocity. The powder gas is compressible, so that there
a¢tually must be a variation of density with position as well as

- time: It is not really correct to lump the powder grains and the

powder gas together as a singite fluid. Finally, the burning of the
powder furnishes energy to the gas, so that the expansion is not
adiabatic.



§§ptioh III. The Lagrange Problem.

- When Lagrange set himself the problem of solving for the
motion of the powder gas in a gun, he was able to formulate it : o
in a relatively simple fashion, because the propellant of his R
day was simply loose black powder. 1n such a case it 1s mot = = S
too bad to.assume.instantaneous combustion. He therefore assumed. |
that he had a cylinder, closed at one end by the breech and at =
‘the other,.variable,. end by the base of the projectile and filled _
initially with hot. gas of uniform pressure, density, and tempera-- L
ture. .His problem was then to calculate the subsequent states
of the system, the projectile bpeing initially at rest..

Lagrange's problem has received its most complete treatmemt .

by Love and. Pidduck®*, who applied their results to the calcula-
tion of p_/p, and W_/W_ versus travel for the case of a 150 mm. . -
gun. (W‘Qdegotes tHe Pkinetic energy of the projectile.) Pidduck ' :
found thgtwthesewratios oscillated but seemed to approach certain
limiting wvalues, which values corresponded to a certain special

- solution. of the differential equation of motion of the gas. The
rigorous solution is of a wave character, involving rarefaction
waves travelling.back and forth between breech and projectile,
and satisfies.the.initial conditions of the Lagrange problem, The
special solution, on the other hand, is of a non-wave character
and does not satisfy the initial conditions of the Lagrange pro-
blem, but corresponds to an initial non-uniform distribution of
pressure and density. From observation of the computational
results for po/pb Pidduck and all later investigators have sus-

pected but not proved that the accurate solution approaches the
special solution in the 1imit of large travel.

Solution IV. The Pidduck-Kent Special Solution.

_ The special solution has also been derived by Kent#¥* and
applied by Hirschfelder et al#¥¥ to the computation of the ratios
.?/EL and\NE/NNb. ln the limiting case of sufficiently small

values of € , the Pidduck-Kent special solution gives values for
the above ratios that agree with the uniform-density values of -
equations (2) and (3). The deviations from the uniform-density L
values become important in the case of large valuesof € , i.e.

for high-velocity guns. As we have said above, the effect of gas

#Love and. Pidduck, Phil. Trans. Roy. Soc. 222, 167 (1922)
#*R,H. Kent, Physics 7, 319 (1936)
##*Hirschfelder, Kershner, and Curtiss, NDRC Report A-142
Hirschfelder, Kershner, and Sherman, NDRC Report A-204
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Irlbtldn also becomes moTe . impdrtant for high Veidc1t1es, as does
the effect of chambrage. The latter becomes more important because

‘the use of a high¢/mratio necessitates the use of a powder chamber

much fatter than the bore. For small values of e, for which the
assumption of uniform density may be made, the effect of chambrage
may be estimated by the methods of BRL Reports No. 307*-and No. 33,
For large values of &€ it is doubtiul that those methods would apply.
: Although the solution of the hydrodynamical problem thus in-
volves a number of complications when we go to large values of g,

it appears worth while to isolate the effect of non-uniformity of

gas density by publishing adequate tables of the Pidduck-Kent special

solution. These tables may not eventually be useful for practical
calculations, but they should be of considerable help in the analysis
of experlmental results on high-velocity guns, if only to tell us, by
comparison of measured pressure distributions with the Pidduck—Kent

'solution, how 1mportant are the neglected factors.

Section V. An Improved_gerivation of the Pidduck-Kent §p¢cial Solution

In the Lagrange problem, of which this is a special solution of

the corresponding differential equationit**, it is assumed that the

chamber and bore form a cylinder of uniform cross-section, the powder
being all burned initially. We follow the notation of Kent in the
above-mentioned paper.

Thus x = initial distance of any gas particle from the breech
y = distance at time t df the same gas particle trom the breech
p = density of the gas
p = pressure of the gas

‘ The subscript zero denotes initial values. A subscript.on a
partial derivative denotes the variable which is kept constant in
the differentiation. The equation of continuity is then

/":/f (%)t | : _ (5)

#J.,P. Vinti, BRL Report No. ;10?, "The Equations of Interior
hallistlcs" Chap. 1V.

#%*N.F. Ramsey, Jr. (with J.R. Lane), BRL Report No. 3, "Analysis of

Pressure-Time Curves for the Gerlich Rifle"

**#It is not a solution of the actual Lagrange problem, because the

initial conditions are not satisfied.



~ The equation of motion is _ - | I - o

R ﬁ ot /x Y/t - S

The equation of the state of the gas is o '
Pl =RT

 where § denotes the specific covolume of the powder gas, T the
absolute temperature, and Rl_the gas constant per unit mass. If -

'Xlga Cﬂ/tv | | | o _Cij

denotes the ratio of specific heats of the gas, théiequation_of o
an adiabatic is ‘ .

I _m\ Y I ¥ - |

:P'(f 7) g P"(Io” F)) . ‘ (9)

Kent further assumes that "the original pressure and density dis-
tribution follows adiabatically from an antecedent regime of

uniform pressure and density." Under these circumstances (9)
becomes ' ,

P = B(pm) = et
/D

The derivation follows through equally well if we replace the
true ¥Y' by a larger effective value.¥ for the ratio of specific
heats, a device that affords a means of taking heat loss into
account.® Furthermore it is not necessary to take the right
side of (10) to be a constant; it suffices for the following
derivation to take it aik)(gr(t»,** where Y (t) is a function

of time alone. Kent suggests that by such a means one can
allow partially for the burning of the powder. It is doubtful,
however, that any such simple artifice will be of use in
attempting to treat the case where the powder is still burning.
Indeed the continuity equation (5) and.the dynamical equation
(6) do not hold in that case, unless the density p be taken as
the density of a "fluid" composed of powder gas and solid powder
together, in which case the above relations between pressure and
density do not hold. :

- # See J. P. Vinti, BRL Report No. 307, "The Equations of
" Interior Ballistics" ' '
J. P. Vinti, BRL Report No. 402, "Project for a New Table
for Interior Ballistics for Multiperforated Powder."
J. P. Vinti and Jack Chernick, BRL Report No. 625, "Interior
Ballistics for Powder of Constant Burning Surface."
*##Suggested by Kent, loc. cit.



The derivation of the special solution for an imperfect gas
has been given partially by Kent, who showed that the solution is
the same as that for a perfect gas through powers of ¢ = ¢/m as
high as the third. In this section we show that this restriction
can be removed, the formulas obtained being entirely independent
of the value of § . Pidduck* has outlined a. proof, but we believe
it desirable to put the complete derivation on record.

Following Kent, we introduce the variable

%E%-qixﬁ(x)dx o

and attempt to find a special solution of (6) in the form

3 = £:(X)q>6t) ' | (2)

AT ¢t =0 we have y = x so that

L) o) = x~—r)§:ﬂ,(><\dx | (13)

From (12) it is clear that either f or ¢ may contain an arbitrary
factor, so that we are free to choose the function ¢ in such a way
that ¢(o0) = 1. Then

£x) = x-f]fox/oa(_x)dx | (4)
From CS'))‘ (||)) AND (IZ) WE FIND

pLz=1= £ e (5)

Introducing the new variable

¥ F. B. Pidduck, Journal of Applied Physics 8, 144 (1937)



w'.-:(-l-';—-\]). o - - (..,y

ve h | | '
h = = Wb 1)

o
where f' is short for f'(x)
Now £'(x)=|—qﬁ<x>=/%(/—o-—']),
so that _£/_0_‘fi;—- ---")) =W, W(P (ls’)‘

Making use of the fact that
(3), =(22),,
ot ’at"

_ L | ,
we wAvE From (6) /0(_3,%’) = - 3:1) = —(_ai’_) (B_Lt | (19)

| - ot" /x 24 Jx X \X /Iy
Using the continuity equation (5), we then find

Bt‘> B ”( ) (?")

On writing (;%’)t ‘;;E;f)t i‘ and 'using- (18), we find |
- (°F | o
Wo (“at")f_ 3‘f:‘>t | ()



In TERMS OF W, (10) BECOMES
P:'K wx(y'(t) = KWox(Phxl[f(t) | ' (22)
From (12), (21), anp (22)

wo £ 9" (1) = - KYw,™ ¢y g (23)
SEPARATING VARIABLES, WE GETAIN | |

wy & ¥F-2 . _
? “i.. ey _;._b’;ML-—— d.,_w_P_ = _B A CONSTHNT (&4_})

IntecraTioN OF (24) wWiTh USE oF Tne conoimtons £ =0

AND w_ =W (0) AT X206 GIVES

- - (¥ £°
Wo. "= w, (o) - EZ_K}?L (25)
OR W, () = wa(o)(\--a.fz) T (26)
WHERE @ = w Woh 2Y(O) (27)
2K a



- Let x, denote the initial distance from the breech to the base
of the pro?ectile, A the uniform cross-sectional area, and abbre-
viate f(x,) by f,. Then, using the fact that when the powder is
all burnell the t8tal mass of the gas is equal to the original
powder mass c, we have

X Sy dxd€_ 4 (e edf_A £, _ 2)
C:,_\Lb/oa(x)dx-Ai_/"odf | -A£ :% = L w,dE cg

If we now use (26) and (28), introduce the d ummy variable/u
defined by f =/L fb, and use the abbreviations -

a,zaf” |  (9)

g EL.('_%/“;) '/(a'-udlu . _. e (20)

we find c ‘_‘AWo_(O):EbS | (31)
| At fhe bgsebgf the projéctile ve have from (12) and (22)

G, = £,0"(1) | . | (32)

P= KWor(£h)¢'_8'lP'(f) (33

If m denotes the mass of the projectile (incfeased perhaps
by some factor a little greater than unity if one wants to allow
for bore friction), the equation of motion of the projectile

then becomes _¥
Ap = AKwW,° - (34
£,0" = AT, - AW (£)0 Y )
Then ' "
W, (£ -
M:ﬁ\(" "):B (35)
m.'Eb
where the constant B is the same as in (2?) and (27). Comparing
(35) with (27), with the use of (26) and (29), we find
¥ o 2¥ qm (36)
AWO(D) £b(|__a'°) — S'—:i °
Dividing (36) by (31), we then find%/ | |
c=2%0a,(1-a,) "G (37)
¥ -1

If ¥ and ¢ are given, the parameter a, may be calculated from (37),

The Ratio JC”’/;Pb

" From (22), (26), and (29) the ratio of breech pressure p, to
base pressure p, is given by ‘ '

Zr/tv-1
To/p,=(1-a» @8)

10
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The Kinetic Energy W.__ of the Powder Gas:

Y .
Since the gas velocity( /'at)x——( 9’/3*-) , We have

w-bheGE =[Sy

- PUTTING dx =df/§' , 43 /ot~ f@ (&) grom (12) /039/3,, /0 FRoM (5),

AND .
/'%/5' w, FrRom (18) WE 0BTAIN

: W‘: = 2 (P f de | | _(4'0):

’ .
At the base of the prOJectlle the gas velocity f‘,¢ equals
the projectile velocity V. Use this fact, insert (26) into (40),

replace f by qub , use (29), and replace Aw,(o)f-b 8Y /S ACCORDING
TO (3I) One FINDS

Wp = _C f(' aor )/(ar ",ﬁdfa | (4))

The Ratio P/Pb

We next investigate the ratio of the mean pressure P to
the base pressure P , Wwhere P denotes the mean pressure that
should be used in the equation of state. In interior ballistics
the equation of state is used to eliminate the temperature, which
occurs in the expression for the internal energy of the gas. To

write down the total internal energy we need to find a mass average

for the specific internal energy ¢,7T . Now
Cy J_

T =2 ( - ) ' 42
R, r 7 (42)

The total internal energy E} is then given by

£; = %j:uP(/‘_‘?_.q) A/" dy | (43)

The value used for p in interior ballistic calculations 1is the

average value
c

v = Aul | (44)
AV Ay, |
The approprlate mean pressure P for use in the ecuaticn of state
is then given by

ccv—(ﬁw ...CVJ'%P ",)A/d% | (45)

Now From (1) AND (12) we HAVE
£.9 =y, - q_{:”/o,cx) dz = 4 -n¢/y (46)

11




Tutn

== =8 1= A—Ha-L)-—f¢ )

FRom (45) AND (4-'1) .

| be‘P = ["" -l "'3’/0 | (48)

Now pUT 43,_5-’!.’8)( P =p, dx—Jf/f Er=wo,

;s -q=w", AND usE (zz) Toe RESULT 13 -
be‘P K" &'l}ff Wo 18 (49

Now USE (2.6) Anp pur = ,-(f “The rESULT |15

¥r- |) |
P =K¢ W’W (O)J‘ (1~ a,,,:.) ’A. - (50)
_ Wol(0 |
Now WRE Down (z.?.) FoR P, OWIE P €Y P, EXPRESS Wo(fy) BY - MEANS
-3 :
oF (26) anNp (29), AND REPLACE THE EXPRESSION THAT OuRS,VIZ. (1-a.) /(H),
B o N
2 2y o, s AccormnNG To (37). The ResuLT IS | |
3 "/nr—t) '
P _ .__—___,.J (\-a, d (59
yb ¥ asS ”L #

THE (NTEGRAL MAY BE INTEGRATED BY PARTS TO GIVE

.
2y ' >, .2
]h a, )H"’f‘ =(1- a.)*" LN “°f G-aou®)? /,La',.l. (s2)
‘ ' 4
Then , From (51), (52), Ano (31)

€
= - (53) '
I+ S .

it

WHERE. ‘
) ! - 2 '&'ll‘i 2
s = ‘S"L(\ _ao,*'- ) /‘ df" | (s4)

12



The kinetic energy of the powder gas__(Al) maY-also be ekpresséd in
terms of §: _ o S
cV/g B | S (5%)

so that the tOtdl Kinetic energy oi prOJectlle and powder can be
expressea as ' :

WTon.. = “'va G _") ' o (56)

From (56) we see that the total kinetic energy of projectile and
powder can be expressed as

W'ro-rm_ :('A_) m'e V | _ | ' (57)
vhere the effective mass m, is given by o
mc-'m(w—-—) , | | (58)

Note that the correct mean pressure:P for use in the equation

of state is equal to the effective pressure Pa that has to be
assumed to act on the eiiectlve mass Me to lmpart to it the total
kinetic energy('/z)m Vi To show this note that A€ =me dV/dt

gives the correct totel zclnetlc energy (on integration of Ar,_\ld.t ).
Diviaing this expression by AP, = m dV/d+¢ we find_‘pc/]o =

L4 e/s P/Pb’ as was to be shown.

Section VI: Discussion of the Above Results

Lettings

n 5})1_\ o _(59)

we have Crom (;U) (37), and (54)
$ - f G-aop®)"dp  (60)
€= Z(n—n)aou—ao) "g | (61)

=g [ omaqo e (62)

In applications ¥ and € <re given and.aoana/%'are required. We
first show that the integral in (6Z) can be reduced to an ex-
pression involving S. Let

R= [ (-aop)"pWrdp | (63)

# n is called the "polytropic index" in astrophysics.

13



By expressing /u”a;u AS -/J-d/«t We can express the integral as
/

R= Z(n+|)a., f/‘,o /,La/(/-a_// ) s

which can be integrated by parts to give '.

Cl_ ‘)I'H-I ,
= -7 (l-a.,
R ' 2(n+) 2, ZCD-H)Q, f /J— ) (I Q.o/-i )d/u
from which

2ntNa,R = ~(1-a,)  +5 - a,R
Solution for R and division by S gives '

LR L._ u—ao)”’”]
g —S_- T (2nk3)a., S

comparison of which with (61) givei.
1L = 2(Mmtl _ ' \
ol < @4)
~ From (38) and (59) we have also

}z/b (‘_' )'nﬂ

From (6é4) and (65) it is clear that the calculation of all the
practical results of the solution has now been reduced to the
calculation of ag from the given.values . of ¢ and h . We consider
this calculation and its tabulation in Section VII.

To set limits on the parameter a_. we proceed as follows.
From (26) and (29) or from (38) we se® first that a, must be real.

Now in (38) we have a’/(1r -1)= N+|  and we know that n= Y(x~)
is a real positive number, since ¥>|. Thus if @,<0o
we have P,/Pb<\ » an absurd result, since there must
be a positive pressure difference ]9, ]’b >0 to overcome the

inertia of the powder gas. If Qo>| Pﬂ/Pb"C\ do) may be

positive real only if n is an odd integer, any other value of n
giving either a complex or a negative result. We may therefore
rule out the case Q| as non-physical, since any slight change of n
from an odd integer value must lead to a non-physical result.
Thus 0 £ Q. =1 3 examination of (60) and (61) shows

that a, = 0 corresponds to € = 0 and a, = l toe =02. For very

small a we have, from (60) and (61), a_ = ¢/[2(n+1)]. We obtain
the second approximation by binomla %pansion of the integrand
in 8 and of the expres:-uon l-a,,) in powers of a_, thereby
obtaining (1-4o) "~'S=i1+(1+2h}2)a.,, and then repl8cing

this a, by® its first approximation. This second approximation

is Q,= ]:l _ &ht3 &
o | Z(n-H) ~ent)

14



insertion o'f which into (64) givés Sl=-‘ 3 for€&—>0, in .agreement-
with (2/ and (3). Insertion of the first approximation for a  into -
(65), which may be written o o .
'J%AP,: (l--a‘,)"n-l = 11—(n+nao*'.“{“.
b - - o )
GIVES | | '

- T"/.Fb = H% F"’R_ E"“_"‘O_, IV AGREEMENT watH (1),

Section VII. The Methods of Calculatiion and Tabulation

Our problem now is to calculate aj as a function of n and &
from (60) and (61) and then to devise tables by means of which'a0

and 1/5 can easily bé found when n and € are given. Lo do so we
might caltulate, for a given value of n, the quantity e¢ for a
number of evenly spaced values of a_  and then inverse interpolate.
In this way we could construct a taBle of a, versus e and n for

ecoually spaced values of both. LIn doing so we should have to
evaluate the integral S, which can be expressed as an incomplete
beta-function, tables of winich are availavle, by Karl Pearson. (We
did, in fact, make preliminary computations in this way.)

In order to explain most easily our subsequent calculations
it is desirable at this point to discuss the tabulation possibil-
ities. We wish to construct tables with &€ ard n as arguments that
will enable the user to calculate both a, and d. 1ln these double-

entry tables it is desirable that linear interpolation be per-
missible with respect to both arguments € and n. It seems point-
less, nowever, to tabulate both a and b, since the user of the
tables can find either one from tRe other by (64), undoubtedly
more cquickly than by interpolation in an extra double-entry table.
It the table is of a_, it is clear fram (64) that in calculating o
the user will lose agcuracy by subtraction. From a table of 9,
however, he will be able to calculate a, without loss of accuracy.

It is settled, therefore, that we must tabulate & or some simple
function thereof. Yhe functions that come te mind on inspection
of (64) are L/d and(2n+3L4; . Since we can probably insure the

-permissibility of linear interpolation with respect to & only by
taking a rather small interval tor the latter (increasing, as we
see later, with incresse in €), our problem is¢ to fina which of
the three functions S; ¢, or(znt3)/s will give the pest inter-

polation possibilities for n. That is, for fixed &, which of these
three functions is most nearly a straight line when plotted against
n? The above mentioned preliminary computations show unmistaxaply

15



that only (an3)/$‘- is reasonabnly straight.

-' We showed above -that _f=3 for€=0 and that &,=I corres'ponds to
€ —~ oo , so that vy (64),§»2n+3 for € oo The resulting
simple table of limiting values _

B Ky ys'f :.(zn+%y§ ﬁ
o 3 /3 H" 2Mfs
oo zn.fs '/(zn+3) | L

then shows that the curve of ¥§ versus n  is not expected to be
straight for large values of €. To see why the curve of (zn+3)/§
versus N 1is eXpected to be straighter than that of d versus n
for all ¢ we next examine the behavier of the function (2h+3)/§

in the limiting cases of small N and large N . This investi-
gation leads us to the functiion that we actually tabulate.

To do so, we tirst rewrite (60) and (61) in terms of the

quantity |
- = 2o . (66
) b - 1-@e | )
From (60), (61), and (66) we then have

. . .
€= 2nb [ T1rb0-p?)] dp o7
Since 0 £ Qo £ | , we have b2 0o, b=o corresponding
to €=0 and b=a to € = . Yo investigate the case
of small N we write the integrand of (67) as exp{nInCi+ bll-p.")]}
- and expand this exponential in a power series in N . The result
is ‘

€= 2(n)b [I + nf' In [+ b(l—pz).]dp_-g- ]
. Jo

Now as M. approaches zero we see that b approaches the value €/2,
Any deviation of b from the value€/2 in the logarithmic term
will result in a cuadratic (n?) contribution to the expression

in brackets. Thus, through linear terms only ‘

€ = I+ nJ +
2(n+) b -

WHERE J\-’-'-L" |n[|+_ei(l-rl.z)] dp

y : .

= (|+§)_lln[ﬂef{e(z+e)} "‘J-Z (69)
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‘The evaluatlon ol this integral is- glven in Appenaix L. For1Sﬁc-
ficiently small € it has the value /3. -
From (64) and (66) we have

it _ 4 L - .Z_;‘_".‘.ﬂ | | - "(70)"
30Ty Te

Comparlng (68) and (/O), we obtaln through terms linear in n -

Zh+3 _
= =+ ZIH :
s = t o, (71
from which _ _
S-3a-t0)pen 0GR
The initial slopes are thus E_J_. for 2'18"'3 versus fl and 2-6J
. _ € €

for S‘ve'rsus n

To investigate the case of large n we first note in (67)
that since b 2 o0 the integrand and thus the integral are both
ecusl to or greater than unity. Thus from (67) as h— oo
for a fixed value of €, we must have b—+»¢© . ©Since the integrand

then takes on the indeterminate form {® , we rewrite it as before
as exp{_n n[o+b(n-p )]} which becomes exp[nb(a—p‘)]
for the limiting case b—»© . For M-—»eve may also replace the

outside factor (nt) by n , thereby obtaining
e =2nb [ exp [nbu—'ﬁ)] dp
SO THAT b = Kle)/n
WHERE K(e) IS A SOLUTION .oF

2Ke f e ’Ldfi € o 5
Then trom (70) and (74) '
2n+3 _ 4 n _ 2(n+) - |
s K(e) [3 (76)

~which gives for n —» oo
\ |

—
—

(13)
('14)_

\
5 2K(€) e (77)
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It is an, interesting check at this point to note that n— o
correspohds to ¥—| , 1.e. to an expansion process governed.

by'ﬁ’('/ﬂ' -"l)'qf(t)#_}’('/fa—l]), _ ~ which process is

isothermal if Vﬁ:) is constant. The equation of motion (20)
can then easily be integrated directly, with (75) and (77) as
direct results. ‘ .

On. putting Kﬂz‘s Sz'_m_ (74) | , We obtain
€ =T "¢ H(e)exp(s ?), o (78.1)
WHERE & = K2 - g2 . |
= (" -5 |
AND. H(¢) = zcrr | )jo e 0/5 | (18.2)

of which there is a very good table.* With the aid of this
table we may calculate the values of € for evenly spaced values
of 6 and, by inverse interpolation, then obtain the values of
6 and of K=e 2 for evenly spaced values of e.

Fraem (77) the final slope of ¢ versus n for large n 1is
clearly zero, while fram (76) the final slope of (2nt3)/§ versus

' Z
n is ( ’/K = /6) . We may now summarize the initial and final
behavior of the curves § versus N and(zh+3)/s versus M.

§ versus n ‘H'sﬂvem n
nin Seove | 2 —6J/e 23/,
me;. Swoet o yK - Z/é

Now J & €/3 for sufficiently small € and J & In € for
‘sufficiently large £, so that the initial slope of { versus n
varies with increasing ¢ from O to 2 while the final slope is
always zero. Actual plots indeed show marked curvature for the
curves of § versus n . :

The following table gives initial and final slopes for the
curves (2n+3)/§ versus h , for a few values of e.

#"Tables of Probability Functions", Vol. I, by the WPA, sponsored
by the National Bureau of Standards (.1.9415
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Slopes of the Curves ('-2.l1+'3)/8‘ V.e.rs_us n

E Tnitial Slope < . Fiﬁal Slope 6(15 | Diffe’rénée
o| o.e667 O 0.6667 ' 0.0000
2| 0.4929 ‘ 0.5602 o 0.0673
4| 0.4038 | ~0.5086 | .‘_." 0.1048 -
6| 0.3471 | 04756 | o.1285
8| 0.3070 - 0.4515 0. 1445
10 | 0.2768 o 0.4329: 0.1561
oo | 0.0000 - . 0.0000 0.0000

At ¢ = 10 the difference of the slopes 1s clearly approaching a
maximum value which will probably be less than 0.2. Since the
~tables of the present report end at e = 10, we have not seen fit
to extend the above table beyond that value. .1ln any case it
appears that the curves of{(2n+3)/§ versus M are very much
straighter than those of $ versus n

Further investigatibn then showed that the quantity(an+3)/§
can be expressed as follows in terms of a very weakly varying
function ¢,(€,n),

n+3 _ 4 xntgﬁl_] , | (79)
s 1+ N .

where % is the slope of (UH'?)/S versus ) for n=xe and asé’ is
its slope for =¢° ., Thus ‘

™ = L (80)
e -
WHERE N |
J=V1Z In[1+e~ Jé(z+e)’] -7 w9
_
" ef = ke - %, (81)
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where K(€)  is given by (78). Over tne rangesO£e & 10,
Y2 £ h £ & ; the quantity ¢, differs very little from unity,
ranging from 0.960 to 1.065. Such behavior is not surprising, for
a constant value of €, will clearly reproduce the correct behavior
of (2n+3)/$ for very small W and for very large n ; it gives
the values | #2/g)J for very small N , in agreement with (71) and
n zhn ' : _
I*Ke) "€ = for very large N , in agrecment with (76). Indeed
replacement of ¢, by unity in (79) gives values of Y§ not worse
than one part in L1000 for any of the values of € and N that we
consider. OSuch accuracy would probably meet the practical require-
ments of interior ballisties, but it appears worth while to obtain
somewhat better accuracy, since this Pidduck-Kent solution has con-
siderable mathematical interest as the limiting solution of a

*»

classical problem in fluid mechafiacs.
Frem (70) and (79) |
‘ C, = .....Q....:.L. (82.)

- (g-an

L _2n)

'Q—.(n' b e |

The final ¢,- table of this report has a range on n from 0.5 to 5,
corresponding to values of the effective ¥ ranging fram the value
1.2 (approximately the value for ballistite, but uncorrected for

" heat loss) up to ihe value 3, which would allow for enormous heat
loss. '

WHERE

(83)

~ We tound b by solution of (67), which, for an integer value
of N, gives € as a polynomizl in b . Forh=l we had simply to
solve®a quadratic equation. rFor N =2, 3, 4, and 5 we tapulated
€ versus b , at ecual intervals, and inverse interpolated to
find b versus €& at equal intervals.  Ln obtaining a double- _
entry table of &, versus € anG N we founa the following argument
~intervals satisfactory for linear interpolation:

€ =0(0,2)I1(\)10 AND n='/z, I,Z-,3,435

To obtain reasonable smoothness in this table we founda it necessary,
because of the subtractions in (82) and (83), to calculate b to
high accuracy*, especially for the smaller values of € . This
circumstance, conversely, accounts for the fact that very few
significant figures in the ¢€,- table will give Y§ to high accuracy.

% This necessity rendered useless the Pearson tables of the incom-
plete peta-function.
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For n"]z we had to calculate, accordlng to (67), values of

the 1ntegral

Il/z -—f [\4‘ b(l""Pz)] AF o . _
=[/L1+0+by b -m’_'b"”'_] | en™

In obtaining tables of b and ¢, in this case we found it con-
venient first to tabulate & versus b"% , at equal intervals
of b"Y% , and then to inverse interpolate for the latter rather
than for b , _

We did not have to compute b or ¢, for any other values of
N, except for the purpose of checking Mthh we did very simply
as follows. “he integral Iy f [H-b(l )] q,u.n (67) satisfies the
recurclon formula

| Z(n+|)(|+b)I + - %
Lo = 2n+3[ " ’] - (62)

We chose several values of b and for each of these values cal-
culated L, ror n= Y2, %, %,%z, anp 2/2. by means of (84) and
successive apyllcatlons of (85). Then by (67) we easily computed
the value of € for each of these cases and, frem (70), the
accurate value of ¥$ . Tc check the adeguacy of the unit n-interval
ol the. € =table we flrst interpolated linearly in the latter (or
used the graphs or contour map given later). We then interpolated

in the.tables of & anc - & to find the values of the latter
guantities correqponalng o each € and then inserted the values
of n,x,A, and €, into (79) to find V¥§ . Comparisons

with the accurdte values of ¥§ showed that the error was never
reater than. that arising {rom the use of tabular values of N
See Section VIII for a discussion of errors of the tables.)

For the table of &(€) we computed anchor values directly from
the formula

oc = Zl(1+2)" in[HE’rJe(Ue 2] (ee)

*3% For the derivation see Appendix C.
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‘deducible directly from (69) and (80). These anchor values were
€ =0(0.1)2.6(0.2)5.0(0.5)10.0. ‘Direct interpolation then
gave values of & for the final tabular arguments: € =0(0.0|5) l-.O
\0 1) 4.0. (0.2) 10.0. ‘

For the table offff&) ve first used (78), with the aid of the
WPA "Tables of Probability Functions", to make a table of & for
6= 0.18 (O 02)  1.30. Inverse 1nterpolat10n then gave tables of
6 and.thus 01099-'A}2-%@ for the same anchor values of €
as for et . Division gave a table of /# for those same anchor
vezlues and direct interpolation then gave the table of # for the
final tabular arguments: € = 0(0.1) 2.6 (0. ¢) 5.0 (0.25) 10.0.

Section-VIII. Discdssion of the Tables and their Accuracy

. Appendlx A gives ‘the flnal working-tables for «(€) gce),
and ¢, (&,n) . Appendix B gives a set of graphs of ¢, "versus
€ FOR M ="2,1,2,3,4, 5§ , a contour map of €, as a function
of e and n ,,and a tdbie of values¥# read from the graphs and
used’ in constructlng the contour map.

The values of & and‘%? are given to four aecimal places and
are correct 'in all cases to four dedmal places, the original anchor
values. of &« and e« having been calculated to seven decimal places.
The values. of €, are given to three decimal places, rounded down
from four decimal places. . The possible error in a tabular value of
o¢ or of @ is thus not greater than 0.5 in the fourth decimal, i.e.
0.00005. Examination of the differences shows that linear 1nter--
polation is permissible throughout either table. With a maximum
possible errop of absolute value 0.00005 in either of two neighbor-
ing entries, it is clear that the permissible linear interpolation
cannot give an error of magnitude greater than 0.00005 either for o«
or for . Experience with the ¢, table (which is not subdivided
quite finely enough to make linear interpolation always rigorously
permissible) and with the ¢, graphs and contour map shows that the
possible error is one unit in the third decimal place, i.e. 0.00l.

We now ask the question: how much error can be produced in Y§
by these possible errors Ae(=0.0000%, 48 =0.00005, ANO AC, = 0. 00/ ¢

We have
e om[ugﬂ'.] (19)

S 1+ c,n

# This table is included to facilitate possible ‘reproduction of this
report in other forms.
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A word of warning. is appropriate here, 1In evaluating the fraction
Ot+tan)/a+cn) it would be entirely incorrect to keep only _
three decimals in the numerator and three in the denominator, simply
because ¢, is given only to three decimals. One can best see this
point by considering the case e=2,n=1\ for which &= 1.1364
and €,= 1.061. We compute the fraction(1+&@&n)/(i+¢c,n) . as
1.070 for €,#1.061 and 1.068 for C,= 1. Thus rounding ¢, to zero
decimal places leaves unaffectea the second decimal place of the
fraction, so that we are justified in keeping two more decimal
places in the result than were used for €, . Instead of using:
elaborate rules for the proper number of significant figures,

- however, one will probably find it simpler to use more places than
are necessary or valid in calculating (79) and simply round down:
at the end to the proper number of figures for V/§ that are in-
dicated by the considerations about to be given. '

Error in Y from Ervror‘irn e« Alone

Let Ayl '/$) be the error in )/§ arising frem insertion into (79)
of a value of &« in error by ae . From (79) we have

' 1) - .!:_CL";? n | (87)
Ae((f) . (|+C'n)‘({';;§)aac _ .. | '

Placing ¢€,=/ and B=1.564 (its value for €= 10) we find that the
coefiicient has its largest value for n=5 (for the range of values
of N that occur in the tables). This value being 0.565, we find
for the¢ largest possible error in VY§ that can arise from the possible
error 0.00005 in & , the value '

AJ‘IS): 0.00003,

MAX
or three units in the fifth decimal place of Y§.

Error in Y8 from Error in £ _Alone

Let A,e('/S) be the error in ¥/§ arising from insertion into (79)
of a value of 4 in error by ag . Placing ¢€,=1 in (79) wé then

have 2 ,

' «n A

1) = - 8p (88)

Aplg (1+h) (2n+3)
- -

The largest value of n"(H-n) '(zn+3) for our range of values of
n occurs at N=5 and has the value 0.32. The largest vzlue of «
is 2/3 for € = 0. For a possible error A,é = 0.00005 we

thus find

G/
‘P max = (0.32)(§)(0.00005) =0,0000),
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or one unit in the fifth decimal place of Y§,

"Error in Y8 from brror_in ¢, Alone

" Let A, (!/§) be the error in V/§ drising from insertion into
(79) of a value of ¢, in error by a¢,. From (79) we have

A (Y8) = =(B-NN"_ ac, (89)
a+m%(zn+3) | S
on Gifferentiating (79) and putting ¢,4st . The largest value of

o (B-1)is about 0.16, occusring for €=10, and the largest value
for the function n"(l-rn)""t'tnfg)" is about 0.064, occuring at n&

2.3. On insertion of these values and the maximum possible value -
ac, = 0.001, we find '

(!/,S_}

Ac'mx
or one unit in the fifth ‘decimal place of Y§,

= 0.0000]

Thus in the practical use of Eq. (79) and the tables for e, 2,
and €, we may expect a maximum possible error of 3+i141 =5 its
in the fifth decimal place of ¥/§ . Now the smallest V/§ for
our ranges of € and KB , occurring for €=10 and N=5, is about
0.23, so that the maximum possible error is about 5 parts in
23,000 or 1 part in 4600. Roughly, then, the maximum possible
error is about 1 part in 5000 in calculating Y§ by (79) and the
tables. It would be cuite feasible to readauce this possible error
to a much lower value by using finer intervals and more decimals
in the tables of &« and Z and still retain the desirable feature
of permissible linear interpolation. With the use of such bulkier
tables of ®& and one could reduce the possible error to that
arising from error in €, alone, or about 1 part in 25,000. We
‘nave not felt it worth while to do so, however.

Possible krror in de

From (64) we have

| _ 2n+3  2(n+))
NI : _ - 90,
| <, s + z (920)
so that -
AQg = —-aoz(znﬂ)a(%-) (21)
From (90) and (91) | |
AaQ 2n+t3 ‘
L~ - ‘—‘[zn-g-_?-_ z(-n_ﬂ)] A(‘;—.) (92)
Qo '_'_"'s -+ ---—-—"e | |
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We have seen that by far the largest part‘of.the possible error
in Y§ arises from: the possible error in &« and that the largest
possible error in ¥§ aue to error in « occurs at M=5. To obtain

an upper limit to{8@efa,|l  .e therefore insert into (92) the

value N=§ and, obviously, the largest vaiue of € , viz, 10, that
oceurs in our tables. Using the value (2h+3)/§ = 3,034 for
€ = 10 and N=5 and the value | A (I/F)) max = 0.00005 we find

o ’A'q’/ao, = 0,00015

. The maximum possible errdr in @4 is thus only 1.5 parts in.

10,000 or. 1 part in 6700. It is clear that the maximum possible
absolute error also corresponds to the same values of € and h ,
for which Qoe=0.2363, so that Vaasly,, = 0.000035. o

Possible Error in P"/T’b :

The Pidduck-Kent value of the ratio of breech pressure to
base pressure 1is given by : _

__J;E_.-: (-ay) " | (.5)
N b n- |
lhus A (Pa/rb) = ‘(I’H'I)( 1-Q,) lAQo
and AR /%) _w

(93)
(Po /Pb) L |
On inserting the values A Q¢4 =0.000035, @5 =0.2362, and n= 5, |
we find
MAX

B(Fo/Py)
(F-/Tv)

The maximum possible error that can arise in calculating the _
Pidduck-Kent value for this pressure ratio trom our tables is.

= Q,00027

thus 2.7 parts in 10,000 or 1 part in 3700.

Possible Error in'P/-Pb OHRVV;/WP

The Pidduck-Kent value for the ratio of space mean pressure
to base pressure, or for the ratio of the total kinetic energy of
the powder plus projectile to that of the projectile, is given by

j’"/yb=__%_vf!. = 1 +ef
P
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The greétest possible error in either ratio is thus € times the
greatest possible error in Y§ or 0.00005 € . For €= 10 and n=5
the fractional error thus becomes -

0.0005 )
I+ (0.23)10 = 0-0002

The greatest possible error that can arise in calculating the
Pidduck-Kent value tor this ratio from our tapoles is thus 1 part

in 5000. /{WVW
Finty. fmrih~

Sidney Kravitz
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 APPENDIX A

TABLES FOR THE PIDDUCK-KENT SOLUTIUN
| ‘ ' ‘ T
8§ 2Zn+3 pfc,

where n = 1/(¥ - 1) and « fg , and €, are given in the tabples hhlch
follow below

TApLE I

- In the.folldwing téole & is given as a tunction of € tor the
following values: O( 05)1( 1)4(.2)10. It is found _from the

following formula: [\[H_"'—‘{ln """""e\ﬁ_“'-:)} __j

The first Iorwara dlfferences of the function are“given in

the third column marked A,. Linear. 1nterpolatlon is perm1551ble
€ ol A, & ol A, & A,
00 | .6667 | -66 J 1.0 | .5621 | -81 || 4.0 -4033 ~67
.05 . 6601 -64 I 1.1 - 5540 -78 4l .3971 |} -65
.10 . 6537 -62 1.2 5462 -75 b .3906 -62
o d5 <6475 -61L || 1.3 . 5387 =73 4.6 . 3844 =591
. 20 0414 -59 0 1.4 5314 ~70 4.8 .3785- -57
.25 L6355+ =57 1.5 » D244, -67 5.0 . 3128 =56
.30 . 6298 -56 || 1.6 <5177 -65 5.2 . 3672 -53
.35 L6242 -55 | 1.7 .5112 -63 5.4 . 3619 -51
. 40 . 6187 -53 1.8 . 5049 -61 5.6 .3568 =49
45 .6134 -52 1.9 . 4988 -59 5.8 . 3519 ~48
.50 . 6082 -51 2.0 V4929 -57 6.0 3471 -46
.55 .6031 -50 { 2.1 4872 ] -56 6.2 L3425+ 44
.60 .5981 -48 || <.2 4816 -53 6.4 .3381 -43
.65 .5933 -48 || 2.3 <4763 -53 6.6 .3338 -4
.70 . 5885+ =46 2.4 4710 -50 6.8 . 3296 41 |
.75 . 5839 —46 2.5 L4660 | -50 7.0 3255+ | -39
.80 . 5793 bl || 2.6 . 4610 -48 7.2 . 3216 -38
.85 . 5749 —4h | 2.7 4562 -46 7.4 .3178 -37
.90 . 5705+ -4< |1 2.8 L4516 -46 7.6 <3141 -36
.95 .5663 b <09 4470 -4ty 7.8 3105+ | -35
5 3.0 NI =73 T.0 . 3070 =3
3.1 .4383 —42 8.2 . 3036 -33
| 3.2 4341 -41 8.4 . 3003 -32
I 3.3 . 4300 -40 8.6 2971 -31
i 3.4 . 4260 -39 3.8 . 2940 =31
H 2.5 4Rl -39 9.0 . <909 -30
3.6 . 4182 -37 9.2 . 2879 -29
i 3.7 4145+ -36 9.4 L2850+ ~-28
3.8 . 4109 -36 9.6 L2822 -7
3.9 <4073 -35 9.8 R795- =27
10.0 .R768




TABLE II

In the follow1ng table ﬂ is given as a function of €& for
the following values: . = 0(, 1)2 6(.2)5(.25)10.,
= d ~-Z -Kr |
ﬂ ol K g where k 1s the solution of € = ZKE_ e d’-’

The tirst forward difterences of the function are given in

‘the column marked A,. Linear interpolation is permissible.
Q_ ﬂ_ O, 6 '/g _Q. E ')@ A,
0.0 1.0000 67 2.5 1.1686 63 5.00 |1.3160 136
0.1 1.0067 | 69 || 2.6 | L.1749 125 5,26 |1.3296 | 135
0.2 1.0136 | 69 || --- m————— | - 5.50 [1.3431 134
0.3 1.0205~| 69 | 2.8 1.1874 | 124 || 5.75 |1.3565+ 132

0.4 |1.0274 | 70 '
0.5 1.0344 | 69 3.0 [1.1998 122 6.00 [1.3697 131
0.6 1.0413 70 3.2 l1.212 121 6.25 1.3828 129
0.7 1.0483 .| 70 3.4 | 1.2241 119 6.50 |1.3957 128
0.8 1.0553 69 || 3.6 | 1.2360 118 6.75 1.4085- | 126
0.9 1.06z22 69 || 3.8 | 1.2478 117 '
1.0 1.0691 69 || 4.0 | 1.2595—-| 115 || 7.00 |1.4211 126
1.1 1.0760 69 || 4.2 1.2710 114 || 7.25 | L1.4337 124
1.2 1..0829 68 || 4.4 | 1.2824 | 113 || 7.50 [|1.4461 123
1.3 1.0897 68 || 4.6 | 1.2937 112 || 7.75 1.4584 121
1.4 }[1.0965+| 68 | 4.8 1.3049 | 111

o | :
1.5 1.1033 67 : 8.00 |1.4705¢+ 121
1.6 1.1100 | 67 ‘ 8.25 1.4826 120
1.7 }1.1167 66 : 8.50 1.4946 118
1.8 1.1233 66 8.75 |1.506/ 118
1.9 1.1299 65 |i
2.0 |L.L1364 | 66 9.00 1.5182 116
2.1 1.1430 64 9.25 1.5298 116
2.2 1.1494 | 65 _ 9.50 1.5414 115
2.3 1.1559 64 9.75 1.5529 113
.4 (1.1623 63 -
_ 10.00 1.5642




TABLE I1I

. ‘ _ In the following table c, is given as a function of and n
i for all cambinations of the foillowing values: & = 0(.2)1(1)10;
' n=1/2,1(1)5.. ' o _

n_____ |

£ 2| 1 2 | 3 4. 5
0. - 1.000 1.000 1.000 | '1.000 1.000 | 1.000
. i.glé %-816 1.016 | 1.016 | 1.016 [ 1.016
. .02 .02 . 1.029 1.029 1.030
| : 1.03 1-927 859 1.039 | 1.039 | 1.039
1.045 | 4.046 | 1.046 | 77077 | 17047 | 1.047
. 1 1.051 | 1.051 | 1.052 | 1.052 | 1.053 | 1.053
| 2 - 1.059 1.061 1.063 1.064 | 1.065 1.065
| 3 1.053 1.057 1.061 | 1.063 1.064 | 1.065
| 4 ©1.042 | 1.047 | 1.053 | 1.055 | 1.057 | 1.058
5 1.029 1.036 1.042 1.046 1.048 | 1.049
6 1.015 | 1.023 1.031 1.035 1.037 1.0329
7 1.000 1.010 1.019 1.024 1.027. | 1.029
'8 .986 997 1.008 1.013 1.016 1.018
9 973 . 985 .997 1.00z2 1.006 1.008
10 960 [ 973 .986 992 996 .998

The above table is represented graphically in Graph I of
Appendix B which trollows. Appendix B also contains a contour
map of ¢,(€,m) (given in Graph I1), and the tabular values
used to plot Graph II (given in Table IV).
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APPENDIX B

GRAPHICAL REPRESENTATION OF THE TABLE FOR €;
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TABLE IV

, .In'Graph II on the‘preceding page n is plotted as a function
o & for constant values of C- In the following table the values

usea .to plot these curves are tabulateu with € given as a function
of cq and n. :

¢ 0
¢y /2 | 1 2 3 4 5
1.000 0.00 0.00 0.00 0.00 | 9.00 0.00
1.010 0.11 '} .0.11 0,11 0.11 0.11 | 0O.1%
1.020 0.25 0.25 0.25 | 0.Z5 0.25 0.25
1.030 0.43 0.42 0.42 0.41" 0.40 0.40.
1.040 0.65 0.65 0.64 0.64 0.61 0.60
1.060 | —--= | 1.69 | 1.50 | 1. 44 1.40 | 1.35
1.063 —-—— -——— 1.98 || 1.75 1.63 1.60
1.065 ——— - ———— —— 2.00 1.92
1.065 ———— —-——— ————— ———— <.73 2.98
1-063 ——_——— ] T 2 45 2-95 3018 3.35
1.060 ——— 2.50 3.1 3.43 3.672 3.75
1.050 3.29 3.73 4o s .55 5,75 4.87
1.040 bol5 460 5.290 .5z 5.73 5.89
1.030 § 4.92 5. 4, 6.26 6.45 6.70 | 6.85
1.020 5.65 6.23 6.90 7.37 7.65 7.85
1.010 6.34 6.98 7.80 8.3 | B.60 8.83
1.000 7.00 7.75 8.70 PR ' 2.5% 9.80
.990 7.72 8.57 9.65 ———— ———— ————
.980 8. 45 9. 40 A S ——— —
970 | 9.20 - - S S ——e




* APPENDIX.C
EVALUATION OF CERTALN INTEGRALS

_ (The aux:Lliary variables used in this appendix have no
connection with the notation of the rest of the report.)

1. Evaluation of J f /a"-[' + —("‘f’ )J dr

Ve .
On putt:i.ng H-"i K // X'(z/e) V= , AND (e/Z) = X') ,

= (e)"‘f"%(x -x’-)dx_ | _
= (g )""f ,&n-(K-fx\alx+(—)""fx',£y.,(|<—x)a|x
(_é_)/zE@K-rx)MHx) (K+x)} {-(K x)lw(K-x)-f-(K
= (2)" [k i+ X And KX = 2]

KX K’--rx; ’-+zp<x, -
Now K*-X2=| AND K-X |+ & +JE (2+€)

J= (w*»”%c'mr—“mul 2

we find |

Tnus

2. EvALuaTIoN oF L v, —f D+b(l—x")]” dX )
=(14b) " ) L1 =2 X" ] LJ

S S
Ler X (\Hb) = m¢9- so TﬂAT'@/'RAMsEs FRoM 0 ToO
-l V2 -l
Om = S (T4 +an” b

T, =(+b)b " [7 costode
f*m cos20de = (% )(Om 51N By COSOm)

Now | R L
' -(Vl)['& B /L b J

THEN

‘Tﬂus | . Ivl= 2 .|‘|‘|:I+b'_'|b ”"‘twn 'bvz:l
3. Gven L= f,,' ‘EH‘ b(1-x*)]" dx  To DER_\VE A RECURSION FoRMULA
FOR TII.,\.,.I |

IM—J' L+ b(~x] L1 bli-x] dX

-34- B



i

e L

ol frsax ] afienart]
Xzo ‘

Lpy- (1401,

= 5_(111717 ]_'1+b(1—:§aﬂn+1 l: _ ?(iTl)fi:-l*b(l'x_a)] n a'x.

In+1

= 3
= —T—-]—H Iy - (orT 1’1"']‘-)"‘-“

- 2n+ I . | 1
Thus . S(mry) 21T (WO, 4+ ey

| o1 |
-and Infl = W[Z(n-i—l) (1+b)In + 1]

We therefore have

13/2 = (1/4) [3(1'”3)1_1/2]"' J]
Iy, = e [5reT,, ¢ 1)

I, = WE[1+0)1, ), + 1]

Ig/s = -(1/10)E(l+b)17/2 * 1—_}
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TABLE OF SYMpO@s®)

appears

uniform cross-sectional area 10
a parameter 3
a parameter characteristic of the Pidduck-Kent solution 10
a constant | 9

o/ (1-a,) | 16
initial mass of the powder 3
a tunction of & and n | 19
specific heat at constant volume b
total internal energy il
a function of x alone Vi

abbreviation for ft(x) - 8
abbreviation for f(xb) Jo
probability integral )8
= //[i+ bO-x3]"dx 21
= /' lnEl-l-%(l—p*-)]d’,‘, et le
a solution of ¢ = ZKCKIO e ,Ld,“' 17
mass of the projectile- 3
effective mass 13
the polytropic incex, L/(¥ -1) !3
i)ressure of .the gas | 5
pressure at the base of the projectile 3
effective pressure 13
breech pressufe 3

36
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.F space mean pressure behind the projectile
_ ;'_L_[:j___Z(n+0
G- F IR b P .
_ " o202
R . =;j; (1= Qop ) ,L¢4u
Ry the gas constant per unit mass
- — ! - 2. N
s B[, (1-au’) a’/u. |
T absolute temperature of the powder gas
t tine
V velocity of the projectile
L kinetic energy of the powder plus powder gas
wp kinetic energy of the projectile
wtotal total kinetic'energz|of projectile and powder
W the variable (F - r’) _
Yo the variable W@
X initial distance of any gas particle from the breech
Xy initial distance from the breech to the base of the
projectile
y distance from the breech at time t of a particle whose
breech distance was initiaily Xx.
Z reduced breech distance of a particle
ol initial slope of (2n + 3)/d versus n.
& ratio (final slope/initial slope) of (2n + 3)/b
versus n
¥  effective ratio of specific heats
¥' oratio of specific heats of the gas
& = S/R
& charge-projectile mass ratio
q specific covolume of the powder gas

37
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fL_dummy variable
/9 aensity of the gas

/%w_average density

/% initial density of the gas in the special solution

e = i /?

@mmmlﬁ'functions of time alone
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